A casein kinase II-related activity is involved in phosphorylation of microtubule-associated protein MAP-1B during neuroblastoma cell differentiation

نویسندگان

  • J Díaz-Nido
  • L Serrano
  • E Méndez
  • J Avila
چکیده

A neuroblastoma protein related to the brain microtubule-associated protein, MAP-1B, as determined by immunoprecipitation and coassembly with brain microtubules, becomes phosphorylated when N2A mouse neuroblastoma cells are induced to generate microtubule-containing neurites. To characterize the protein kinases that may be involved in this in vivo phosphorylation of MAP-1B, we have studied its in vitro phosphorylation. In brain microtubule protein, MAP-1B appears to be phosphorylated in vitro by an endogenous casein kinase II-like activity which also phosphorylates the related protein MAP-1A but scarcely phosphorylates MAP-2. A similar kinase activity has been detected in cell-free extracts of differentiating N2A cells. Using brain MAP preparations devoid of endogenous kinase activities and different purified protein kinases, we have found that MAP-1B is barely phosphorylated by cAMP-dependent protein kinase, Ca/calmodulin-dependent protein kinase, or Ca/phospholipid-dependent protein kinase whereas MAP-1B is one of the preferred substrates, together with MAP-1A, for casein kinase II. Brain MAP-1B phosphorylated in vitro by casein kinase II efficiently coassembles with microtubule proteins in the same way as in vivo phosphorylated MAP-1B from neuroblastoma cells. Furthermore, the phosphopeptide patterns of brain MAP-1B phosphorylated in vitro by either purified casein kinase II or an extract obtained from differentiating neuroblastoma cells are identical to each other and similar to that of in vivo phosphorylated neuroblastoma MAP-1B. Thus, we suggest that the observed phosphorylation of a protein identified as MAP-1B during neurite outgrowth is mainly due to the activation of a casein kinase II-related activity in differentiating neuroblastoma cells. This kinase activity, previously implicated in beta-tubulin phosphorylation (Serrano, L., J. Díaz-Nido, F. Wandosell, and J. Avila, 1987. J. Cell Biol. 105: 1731-1739), may consequently have an important role in posttranslational modifications of microtubule proteins required for neuronal differentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microtubule protein phosphorylation in neuroblastoma cells and neurite growth.

The development of highly asymmetrical neurones from undifferentiated neuroblasts involves the extension of processes (axon and dendrites), that depends on the assembly of an inner microtubule scaffolding. Clonal cell lines of neuronal origin, N2A and NIE-115 neuroblastoma cells, have been chosen as model systems to study the modifications of microtubule protein which accompany the outgrowth of...

متن کامل

Proteomics Analysis of the Expression of Neurogranin in Murine Neuroblastoma (Neuro-2a) Cells Reveals Its Involvement for Cell Differentiation

Neurogranin (Ng) is a neural-specific, calmodulin (CaM)-binding protein that is phosphorylated by protein kinase C (PKC). Although its biochemical property has been well characterized, the physiological function of Ng needs to be elucidated. In the present study, we performed proteomics analysis of the induced compositional changes due to the expression of Ng in murine neuroblastoma (Neuro-2a) ...

متن کامل

Tubulin phosphorylation by casein kinase II is similar to that found in vivo

Purified brain tubulin subjected to an exhaustive phosphatase treatment can be rephosphorylated by casein kinase II. This phosphorylation takes place mainly on a serine residue, which has been located at the carboxy-terminal domain of the beta-subunit. Interestingly, tubulin phosphorylated by casein kinase II retains its ability to polymerize in accordance with descriptions by other authors of ...

متن کامل

Intracellular signaling is changed after clustering of the neural cell adhesion molecules axonin-1 and NgCAM during neurite fasciculation

Neural cell adhesion molecules of the immunoglobulin/fibronectin type III family on axons have been implicated in promotion of neurite outgrowth, fasciculation, and the mediation of specific cell adhesion. The present study demonstrates that two of these molecules on dorsal root ganglion neurons are associated with distinct protein kinases, axonin-1 with the src-related nonreceptor tyrosine kin...

متن کامل

Addition of protease inhibitors to culture medium of neuroblastoma cells induces both neurite outgrowth and phosphorylation of microtubule-associated protein MAP-1B.

The addition of two synthetic peptides with antiprotease activity to the culture medium of mouse neuroblastoma cells results in the promotion of neurite outgrowth. One of these peptides has a sequence corresponding to the reactive center of protease nexin-1 and inhibits both trypsin and thrombin. Its effect on neuroblastoma cells is similar to that found on serum withdrawal from the culture med...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 106  شماره 

صفحات  -

تاریخ انتشار 1988